本文已被:浏览 1086次 下载 321次
投稿时间:2019-11-07
投稿时间:2019-11-07
中文摘要: 基于近红外光谱技术结合不同优化预处理方法建立不同品牌与简单研磨豆浆粉的无损鉴别方法。首先对简单研磨豆浆粉、国产品牌、国外品牌3类共132个样品进行近红外光谱采集,对比分析其近红外原始光谱图,随即结合不同预处理方法考察其对原始光谱的优化结果,最后结合主成分分析方法对简单研磨豆浆粉以及国内外不同品牌豆浆粉进行鉴别分析,筛选出最佳的优化预处理,并建立有效可靠的豆浆粉近红外鉴别模型。结果表明:原始光谱存在着明显的背景干扰和基线漂移现象,多种预处理均在一定程度上有效消除基线漂移;一阶导数、连续小波变换、多元散射校正、标准正态变量变换及其优化组合预处理的使用,实现了进口、简单研磨、国产3类豆浆粉样品的有效鉴别,但无法实现国产品牌之间的有效鉴别。二阶导数预处理的聚类分析结果则最终实现了所有品牌之间的完美区分,品牌间的鉴别成功率可达到100%。在豆浆粉的近红外快速无损鉴别当中最优光谱预处理方法为二阶导数预处理。
Abstract:To establish a non-destructive identification method for different brands and simple grinding soymilk powder by using near-infrared spectroscopy combined with different optimized pretreatment methods.Firstly,the 132 samples of simple grinding,domestic and foreign brands were collected.The near-infrared original spectra were compared and analyzed.Then,the spectra were processed by different pretreatment methods.Finally,principal component analysis method was used to identify the samples of simple grinding,domestic and foreign brands.The optimal optimized pretreatment method was selected,and a reliable near-infrared identification model for soybean milk powder was established.The results showed that there were obvious background interference and baseline drift in the original spectra,and various pretreatments could effectively eliminate background interference to some extent.The identification of the three kinds of soybean milk powder samples could be achieved by first derivative,continuous wavelet transform,multivariate scatter correction,standard normal variable transformation and the combined pretreatment methods.However,the identification a-mong domestic brands cannot be achieved.The identification of all brands was achieved by the second-order derivative pretreatment method,and the accurate rate was 100%.The optimal spectral pretreatment method for the non-destructive identification of soybean milk powder was second-order derivative pretreatment.
keywords: near-infrared spectroscopy soybean milk powder spectral pretreatment principal component analysis
文章编号:202017023 中图分类号: 文献标志码:
基金项目:国家自然科学基金(31601551、31671931);湖南省自然科学基金(2019JJ50240);湖南省教育厅科学研究项目优秀青年项目(18B118);中国博士后科学基金面上项目(2019M650187);2019年度湖南省大学生创新创业训练计划项目(S201910537048)
作者 | 单位 |
李尚科,杜国荣,李跑,蒋立文,刘霞 | 湖南农业大学食品科技学院,食品科学与生物技术湖南省重点实验室,湖南长沙410128;湖南省农业科学院湖南省农产品加工研究所,湖南长沙410125;上海烟草集团有限责任公司技术中心北京工作站,北京101121 |
引用文本: