###
食品研究与开发:2017,38(3):143-146
本文二维码信息
码上扫一扫!
冰糖橙可溶性固形物和pH值近红外光谱检测
王旭1,2
(1. 怀化学院 机械与光电物理学院,湖南 怀化 418008;2. 武陵山片区生态农业智能控制技术湖南省重 点实验室,湖南 怀化 418008)
Detecting of Soluble Solid Content and pH of Bingtang Orange by Near-infrared Spectroscopy
WANG Xu1,2
(1. School of Mechanical Engineering, Optoelectronics and Physics, Huaihua University,Huaihua 418008, Hunan, China;2. The Key Laboratory of Intelligent Control of Ecological Agriculture in Wuling Mountain Area,Huaihua 418008, Hunan, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1520次   下载 946
投稿时间:2016-10-05    
中文摘要: 研究利用近红外漫反射无损检测冰糖橙可溶性固形物含量和 pH 值的方法。 以 45 个麻阳冰糖橙为标准样本, 采集 350 nm~1 800 nm 范围的近红外光光谱,光谱采用 9 点滑动窗口平滑处理、一阶微分和多元散射校正分别进行预处 理,然后采用偏最小二乘算法(PLS)、主成分回归算法(PCR)、多元线性回归算法(MLR)3 种数学校正方法分别建立预测 模型。经比较,采用一阶微分的 PLS 模型预测性能最好。
Abstract:This paper studied detecting soluble solid content (SSC)and pH of Bingtang orange by using near in- frared diffuse reflectance. A total 45 samples were used to collect near infrared diffuse reflectance spectroscopy between 350 nm-1 800 nm, then 9 point moving average filter, the first derivative and multi-variant scattering correction were used to preprocess the primitive spectrum of Bingtang orange, and then the partial least squares (PLS),the principal component regression (PCR) and the multi-linear regression (MLR) were used to build prediction models which were used to quantitatively analyze SSC content and pH of Bingtang orange. The PLS model with the first derivative data treatment was prior to the other two ways based on the comparative analysis.
文章编号:201703031     中图分类号:    文献标志码:A
基金项目:湖南省教育厅科研项目(15C1092);武陵山片区生态农业 智能控制技术湖南省重点实验室科研项目(ZNKZ2015-3)
引用文本:


用微信扫一扫

用微信扫一扫