###
食品研究与开发:2024,45(5):139-144
本文二维码信息
码上扫一扫!
基于卷积神经网络的白酒上甑探汽方法
(1.四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000;2.四川轻化工大学 人工智能四川省重点实验室,四川 宜宾 644000;3.西南科技大学 信息工程学院,四川 绵阳 621010)
Convolutional Neural Network-Based Method for Detecting Steam on the Retort of Chinese Baijiu
(1. School of Automation and Information Engineering,Sichuan University of Science and Engineering,Yibin 644000,Sichuan,China;2. Sichuan Key Laboratory of Artificial Intelligence,Sichuan University of Science and Engineering,Yibin 644000,Sichuan,China;3. School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 445次   下载 203
投稿时间:2022-08-16    
中文摘要: 针对白酒“探汽上甑”工艺在实现自动化过程中出现的探汽准确率低的问题,提出一种基于卷积神经网络的探汽方法。通过红外热成像仪采集甑锅内酒醅表面的红外图像并做预处理,再结合上甑工艺特点将图像分类,利用卷积神经网络训练得到探汽模型。训练结果表明,AlexNet、VGGNet-16、GoogLeNet、ResNet-18、DenseNet-37 的探汽准确率分别为0.997 0、0.998 0、0.994 2、0.989 8、0.997 0,综合考虑选用DenseNet-37 做模型评估,测试集测试的精确率为0.997 0,召回率为0.997 0,F1 分数为0.996 9,表示该模型性能表现好,故能满足探汽上甑要求。
Abstract:Aiming at the low accuracy of steam detection in the automation process of detecting stream on the retort of Chinese baijiu,a steam detection method based on convolutional neural network was proposed. The infrared images of the surface of fermented grains in the retort were collected by an infrared thermal imager and pre-processed, and then the images were classified based on the characteristics of the retorting process. The steam detection model was established after convolutional neural network training. The training results showed that the accuracy rates of AlexNet,VGGNet-16,GoogLeNet,ResNet-18,and DenseNet-37 were 0.997 0,0.998 0,0.994 2,0.989 8 and 0.997 0,respectively. Furthermore,DenseNet-37 was chosen for performance evaluation,which showed the precision rate of 0.997 0, the recall rate of 0.997 0,and the F1-score of 0.996 9.The results indicated that the DenseNet-37 model performed well and met the requirements of steam detection on the retort.
文章编号:202405019     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(42074218);四川省科技计划项目(2022YFS0554);四川省重大科技专项项目(2018GZDZX0045);四川省科技成果转移转化示范项目(2020ZHCG0040)
引用文本:


用微信扫一扫

用微信扫一扫