本文已被:浏览 337次 下载 284次
投稿时间:2023-04-17
投稿时间:2023-04-17
中文摘要: 为建立一种无损快速检测百香果糖度的技术,以百香果为研究对象,利用近红外光谱技术,并结合联合区间偏最小二乘算法和竞争适应重加权采样算法对近红外光谱进行特征波长筛选,采用偏最小二乘法和支持向量机方法建立百香果糖度预测模型。结果表明:采用多元线性回归方法建立的模型优于多元非线性回归方法建立的模型,联合区间偏最小二乘算法和竞争适应重加权采样算法筛选出的特征波长点数为67 个,占全光谱的2.90%,预测模型的相关系数R2c 为0.972 7,校正集预测均方根误差(root mean square error of calibration,RMSEC)值为0.333 8,验证集的相关系数R2p 为0.967 2,验证集预测均方根误差(root mean square error of prediction,RMSEP)值为0.366 0,模型相对分析误差(relative prediction deviation,RPD)为4.506 6。研究结果能够实现百香果糖度的无损快速检测,并且可以将百香果糖度无损检测便携检设备中的模型进行简化。
Abstract:A non-destructive method for rapidly measuring the sugar content in passion fruits was established.The near-infrared spectroscopy was combined with the synergy interval partial least squares(SiPLS)and the competitive adaptive reweighted sampling(CARS)algorithms to screen the characteristic wavelengths of the near-infrared spectroscopy.The partial least squares and support vector machine were used to establish the prediction model of sugar content in passion fruits.The results showed that the model established by multivariate linear regression outperformed that established by multivariate nonlinear regression,and the number of characteristic wavelengths screened by the SiPLS-CARS algorithms was 67,accounting for 2.90% of the full spectrum.The prediction model showed the R2c of 0.972 7,the root mean square error of calibration(RMSEC)of 0.333 8,the R2p of 0.967 2 and the root mean square error of prediction(RMSEP)of 0.366 0 on the validation set,and the relative prediction deviation(RPD)of 4.506 6.The established method can realize non-destructive and rapid measurement of passion fruit sugar content,and the model in the portable equipment for non-destructive measurement of passion fruit sugar can be simplified.
keywords: passion fruit sugar content characteristic wavelength near -infrared spectrum non -destructive measurement
文章编号:202320025 中图分类号: 文献标志码:
基金项目:贵州省科技计划项目(黔科合支撑〔2021〕一般140)
作者 | 单位 |
田永国1,吕都2,3*,唐健波3,黄珊3,陈超2,卢扬2,4* | 1.贵州省铜仁市沿河 土家族自治县农业技术推广中心,贵州 铜仁 565300;2.贵州省农业科学院 生物技术研究所,贵州贵阳 550025;3.贵州省农业科学院 食品加工研究所,贵州 贵阳 550025;4.贵州省农业生物技术重点实验室,贵州 贵阳 550025 |
引用文本: