本文已被:浏览 365次 下载 266次
投稿时间:2023-05-29
投稿时间:2023-05-29
中文摘要: 碎米作为大米加工过程的常见产物,常会对产品的口感、味道产生影响,因此针对整米中碎米的有效筛分尤为重要。针对上述问题,该文建立基于大津法(maximal variance between clusters,OTSU)图像分割算法的逻辑回归模型用以检测整米中的碎米。将检测结果与国标法进行对比,结果表明逻辑回归模型的曲线线下面积(area under the curve,AUC)值为0.987,柯尔莫可洛夫-斯米洛夫(Kolmogorov-Smirnov,KS)值为0.909,0.5 为最佳阈值;而国标法的AUC 值为0.922,KS 值为0.669,21 为最佳阈值。该文所建立的逻辑回归模型的准确率、精确率、召回率及F1 分数均高于国标法。此外,逻辑回归模型的AUC 值比国标法的AUC 值更接近于1,KS 值也更高,表明逻辑回归模型能够更好地区分碎米与整米。长轴(x1)、面积(x2)、短轴(x3)与长短轴比(x4)4 个特征参数都是模型中具有显著影响的因素,对应的线性关系为z=-139.97-5.35x1+10.93x2+2.86x3+34.59x4。
Abstract:Broken rice,as a common product in the rice processing process,often affects the taste and taste of the product.Therefore,it is particularly important to screen out the broken rice from the head rice.In response to the above issues,a logistic regression model based on the OTSU image segmentation algorithm was established to detect broken rice in the head rice.After comparing the detection results with the national standard method,it showed that the area under the curve (AUC)value of the logistic regression model was 0.987;the Kolmogorov-Smirnov (KS)value was 0.909,and 0.5 was the optimal threshold.The AUC value of the national standard method was 0.922;the KS value was 0.669,and 21 was the optimal threshold.It could be seen that the accuracy,precision,recall,and F1 Score of the logistic regression model established were superior to the national standard method.In addition,the AUC value of the logistic regression model was closer to 1 than that of the national standard method,and the KS value was higher.Therefore,the logistic regression model could better distinguish broken rice from head rice.The four characteristic parameters of long axis(x1),area(x2),short axis(x3),and longto-short axis ratio (x4)were all significant influencing factors in the model,and the corresponding linear relationship was z=-139.97-5.35x1+10.93x2+2.86x3+34.59x4.
keywords: rice screening of broken rice computer vision OTSU algorithm image segmentation intelligent detection of food
文章编号:202320024 中图分类号: 文献标志码:
基金项目:国家自然科学基金项目(82202246);广东省自然科学基金面上项目(2022A1515011520)
作者 | 单位 |
陈浩然1,范方辉2*,牟天3* | 1.深圳大学 化学与环境工程学院食品科学与工程系,广东 深圳 518060;2.深圳市食品大分子科学与加工重点实验室,广东 深圳 518060;3.深圳大学 医学部 生物医学工程学院,广东 深圳 518060 |
引用文本: