###
食品研究与开发:2022,43(15):175-181
本文二维码信息
码上扫一扫!
不同产地山药的近红外鉴别和差异分析
(1.河南牧业经济学院食品与生物工程学院,河南 郑州 450046;2.河南华测检测技术有限公司,河南 郑州 453100;3.山东民和牧业股份有限公司,山东 烟台 265600)
Identification and Variance Analysis of Chinese Yam from Different Origins by Near Infrared Spectroscopy
(1.College of Food and Biology Engineering,Henan University of Animal Husbandry and Economy,Zhengzhou 450046,Henan,China;2.Centre Testing International Technology(Henan)Co.,Ltd.,Zhengzhou 453100,Henan,China;3.Shandong Minhe Animal Husbandry Co.,Ltd.,Yantai 265600,Shandong,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1460次   下载 973
投稿时间:2021-09-07    
中文摘要: 为快速分类鉴别不同产地山药,该研究采用近红外光谱(near infrared spectroscopy,NIRS)技术结合聚类分析法和簇类独立软模式法(soft independent modeling of class analogy,SIMCA)对山东、河北、湖北、河南、江西的山药进行产地鉴别和差异分析,并且比对不同产地山药中K、Ca、Mg元素的含量。结果表明,原始谱图经过一阶导数处理后所建立的模型对山药地区聚类判别和SIMCA判别的准确率均为100%,利用近红外光谱技术可以实现山药产地的快速鉴别。不同产地山药中K、Ca、Mg元素的测定结果显示,K元素含量为1 872.59 μg/g~3 703.28 μg/g,Ca元素含量为209.89 μg/g~334.88 μg/g,Mg元素含量为 215.80 μg/g~343.22 μg/g,加标回收率为 96.26%~98.89%,相对标准偏差为1.35%~1.98%。
Abstract:In order to quickly classify and identify Chinese yam from different origins,near infrared spectroscopy(NIRS)combined with cluster analysis and soft independent modeling of class analogy(SIMCA)was used to conduct origin identification and variance analysis of Chinese yam from Shandong,Hebei,Hubei,Henan and Jiangxi.The content of K,Ca and Mg in Chinese yam from different regions was compared.The results showed that the accuracy of cluster discrimination and SIMCA discrimination of Chinese yam region established by the model after the first derivative processing of original spectra was 100%,and the NIRS could be used to quickly identify the origin of Chinese yam.The results showed that the content of K,Ca and Mg in Chinese yam from different origins was 1872.59 μg/g-3 703.28 μg/g,209.89 μg/g-334.88 μg/g and 215.80 μg/g-343.22 μg/g,respectively.The spiked recoveries were 96.26%-98.89%,and the relative standard deviation was 1.35%-1.98%.
文章编号:202215024     中图分类号:    文献标志码:
基金项目:河南省科技攻关项目(202102110058);河南省重大科技专项(181100211400-8-3)
引用文本:


用微信扫一扫

用微信扫一扫