本文已被:浏览 2667次 下载 0次
投稿时间:2018-08-15
投稿时间:2018-08-15
中文摘要: 为优化生姜黄酮提取工艺,在单因素试验及析因试验的基础上,采用Box-Behnken试验设计安排试验,根据Box-Behnken试验的数据构建误差反向传播(back propagation,BP)神经网络模型,用于模拟提取过程中对黄酮得率影响显著的因子与黄酮得率之间的非线性关系,利用BP神经网络结合遗传算法对生姜黄酮的提取工艺进行优化。结果表明,生姜黄酮最优提取工艺为:乙醇浓度59%,提取温度63℃,料液比1∶37(g/mL),提取时间90 min。此时,生姜黄酮得率可达14.685 2 mg/g。试验结果可为生姜黄酮进一步的开发研究提供参考依据。
中文关键词: 生姜黄酮 提取工艺 误差反向传播神经网络 遗传算法 优化
Abstract:Abstract:To optimize the extraction process of Zingiber officinale Roscoe flavonoids,Box-Behnken experiment design was adopted to arrange the tests based on single factor experiments and factorial experiments,BP neural network model was established using the data of Box-Behnken experiments,the back propagation (BP)neural network model was used to simulate the nonlinear relationship between the significant factors and the yield of Zingiber officinale Roscoe flavonoids,BP neural network combined with genetic algorithm were used to optimize the extraction process of Zingiber officinale Roscoe flavonoids.The results showed that the optimal extraction process conditions of Zingiber officinale Roscoe flavonoids were ethanol concentration 59%,extracting temperature 63℃,solid-liquid ratio 1∶37(g/mL),extracting time 90 min.The yield of Zingiber officinale Roscoe flavonoids could reach 14.685 2 mg/g under these conditions.The results could also provide a reference for further exploitation research of Zingiber officinale Roscoe flavonoids.
keywords: Key words:Zingiber officinale Roscoe flavonoids extraction process back propagation(BP)neural network genetic algorithm optimization
文章编号:201822011 中图分类号: 文献标志码:
基金项目:
引用文本: