本文已被:浏览 420次 下载 390次
投稿时间:2023-02-23
投稿时间:2023-02-23
中文摘要: 挥发性盐基氮(total volatile basic nitrogen,TVB-N)是衡量臭鳜鱼新鲜度的一项重要指标,而现有检测方法存在速度慢、对样品破坏性强的局限性。为实现TVB-N 快速无损检测,该文利用气相傅里叶变换红外光谱获取不同贮藏条件下臭鳜鱼挥发物的光谱信息,采用高斯滤波、稳健局部加权回归(robust locally weighted regression,RLWR)、小波阈值去噪、模拟退火-偏最小二乘(simulated annealing-partial least squares,SA-PLS)等方法进行光谱预处理,偏最小二乘回归和支持向量回归算法构建预处理光谱与TVB-N 之间的关联性模型。结果表明,与其它模型相比,经RLWR结合SA-PLS 选择的特征波长光谱可建立最优预测模型,其决定系数(decision coefficient,R2p)和相对预测误差分别为0.942 8 和4.005 0,具有较高的精准度与鲁棒性。
Abstract:Total volatile basic nitrogen(TVB-N)is an important indicator for evaluating the freshness of stinky mandarin fish.The existing methods for detecting TVB-N,however,are generally time-consuming and in a destructive manner.Gas-phase Fourier transform infrared spectroscopy was employed to obtain the spectral information of volatiles from stinky mandarin fish under different storage conditions,so as to achieve the rapid and non-destructive testing of TVB-N.The spectral data were then pre-processed by Gaussian filtering,robust locally weighted regression(RLWR),wavelet threshold denoising,and simulated annealing-partial least squares(SA-PLS).The correlation model between preprocessed spectra and TVB-N was built by partial least squares regression and support vector regression.Finally,the optimal prediction model was established by RLWR combined with SA-PLS,and its decision coefficient(R2p)and relative prediction deviation were 0.942 8 and 4.005,respectively.The results showed that the established method with high accuracy and robustness provided important theoretical support for industrial online detection.
keywords: total volatile basic nitrogen infrared spectroscopy stinky mandarin fish non-destructive testing model
文章编号:202316021 中图分类号: 文献标志码:
基金项目:“十四五”国家重点研发计划项目(2022YFD2100602);大学生创新训练项目(S202210359384);皖南特色农产品加工技术研究与应用中心专项基金(W2021JSFW0388)
作者 | 单位 |
查靖1,葛玲1,姚颖2,3,李婷婷1,龙白雪1,刘鑫汉1,2,王武1,2*,马飞1,2* | 1.合肥工业大学 食品与生物工程学院,安徽 合肥 230009;2.皖南特色农产品加工技术研究与应用中心,安徽 宣城 242000;3.宣城市宣州区农业农村局,安徽 宣城 242000 |
引用文本: