本文已被:浏览 4380次 下载 722次
投稿时间:2021-04-23
投稿时间:2021-04-23
中文摘要: 含水率是衡量莲子品质的关键指标之一。为实现莲子烘干过程中其含水率的快速无损检测,利用便携式近红外光谱仪采集武夷山和广昌两个莲子品种在4个不同干燥时间的光谱数据,结合偏最小二乘(partial least square,PLS)法建立莲子含水率检测模型。结果表明,两个品种莲子数据混合后,基于原始光谱建立的PLS模型预测决定系数 RP2为 0.928 3,预测均方根误差(root mean square error of prediction,RMSEP)为 0.112 5,剩余预测偏差(residual predictive deviation,RPD)为 3.734 3。进一步比较卷积平滑(savitzky golay,SG)、标准正态变量变换(standard normal variate transformation,SNV)、多元散射校正(multiplicative scatter correction,MSC)和归一化4种不同光谱数据处理方法对PLS模型预测性能的影响。MSC预处理后的光谱建立PLS模型预测性能最好,RP2为0.945 3,RMSEP为0.108 3,RPD为4.275 0。研究表明,利用便携式近红外光谱仪采集莲子光谱反射率结合化学计量学方法可实现莲子含水率的快速无损检测。
Abstract:Moisture content is an important indicator of lotus seed quality.A nondestructive testing method was proposed here,based on near-infrared spectroscopy,that could rapidly determine the moisture content of lotus seeds.Spectral information was collected from lotus seeds from Wuyishan and Guangchang at four drying stages,and partial least squares (PLS)was used to develop a model for determining moisture content.The results showed that the prediction determination coefficient (RP2)of the PLS model based on the original spectrum was 0.928 3,the root mean square error of prediction (RMSEP)was 0.112 5,and the residual predictive deviation(RPD)was 3.734 3,after mixing the data of two kinds of lotus seeds.Spectra were preprocessed using multivariate scatter correction (MSC),which was found to be a more effective preprocessing method than savitzkygolay(SG),standard normal variable transformation(SNV),or normalization.After MSC,the RP2,RMSEP and RPD were 0.945 3,0.108 3 and 4.275 0,respectively.The results demonstrated the feasibility of nondestructive methods for moisture detection in lotus seeds,by combining chemometric methods with spectral reflectance collected using portable near-infrared spectrometry.
keywords: lotus seed water content near-infrared spectroscopy(NIRS) partial least square(PLS)method nondestructive detection
文章编号:202118019 中图分类号: 文献标志码:
基金项目:福建省科技重大专项(2018NZ0003)
引用文本: