本文已被:浏览 4041次 下载 438次
投稿时间:2021-03-09
投稿时间:2021-03-09
中文摘要: 利用真空腌制技术对新鲜鱼肉进行腌制,并以腌制过程中鱼肉的水分迁移和组织结构的变化规律为对象来探讨该技术的腌制机理。结果表明:随着腌制时间延长,鱼肉中NaCl含量呈现上升趋势,并在240 min时达到峰值(1.48%);相反,鱼肉中水分含量则呈现下降趋势,并在280 min时达到最低,为75.5%。核磁共振结果表明,当腌制时间达120 min时,弱结合水的弛豫时间T22和束缚水的弛豫时间T23均达到最大值(P<0.05),两者对应的弛豫峰面积比例P22和P23则分别为最小和最大,说明此时结合水与束缚水的自由度均增大,且部分结合水有向束缚水转变的趋势。核磁成像结果表明,鱼肉的质子密度在120 min时也开始增加,并在160 min达到峰值后基本保持不变。扫描电镜结果表明,鱼肉组织的肌纤维由原本的丝状、紧致的结构先后经历了膨胀、松散和模糊的变化趋势,直至最后的片状溶胶状态。综上所述,鱼肉在真空腌制过程中的水分迁移和组织结构变化与鱼肉腌制过程中的凝胶化呈现很好的相关性。
Abstract:Vacuum-assisted low temperature salting was used to pickle fresh fish,and the effects of this technology were assessed by evaluating changes in water migration and tissue structure in the fish during the pickling process.Extending salting time positively correlated with NaCl content in the fish,reaching a peak value(1.48%)at 240 min.By contrast,water content in the fish showed a downward trend,reaching its lowest value(75.5%)at 280 min.When curing time reached 120 min,the relaxation time(T22)of weakly bound atmospheric water,and the relaxation time(T23)of immobilized water both reached their maximum values(P<0.05).The corresponding relaxation peak area ratios for P22and P23were the respective minima and maxima,indicating that the degrees of freedom of bound atmospheric water and immobilized water increased,and some bound atmospheric water molecules were converted to immobilized waters.Magnetic resonance imaging results also showed that fish proton density began to increase at 120 min,then became basically unchanging after reaching a peak at 160 min.Scanning electron microscopy(SEM)showed that muscle fibers from fish tissue underwent expansion,loosening,and successive blurring from their original compact filamentous structure to their final flaky gel state.In conclusion,the changes were observed in water migration and fish tissue structure during vacuum curing correlate well with fish gelation during salting.
keywords: vacuum salting water migration tissue structure fish
文章编号:202114001 中图分类号: 文献标志码:
基金项目:广东省公益研究与能力建设项目(2015A02009193、2017A020208077)、广东省基础与应用基础研究基金项目(2020A1515011182);韶关市科学技术局科技计划项目(2019sn083、2018sn156)、韶关学院省级大学生创新创业训练计划项目(S201910576028);广东省科技创新战略专项资金(“攀登计划”专项资金项目)(pdjh2020b0538)
Author Name | Affiliation |
XIE Si-yun,LI Yi-fei,LUO Dan-xian,ZHONG Rui-min,LIAO Cai-hu,ZHANG Xia | Henry Fok School of Food Science and Technology,Shaoguan University,Shaoguan 512005,Guangdong,China |
引用文本: