本文已被:浏览 19867次 下载 645次
投稿时间:2020-12-28
投稿时间:2020-12-28
中文摘要: 通过对比多层前馈(back propagation,BP)神经网络、响应面法优化薏仁米酒产氨基酸态氮,为薏仁米酒优化选择更合适的模型。以氨基酸态氮量为考察指标,薏仁米与糯米的质量比、接种量、温度、水料比为影响因素,采用中心组合设计(central composite design,CCD)对薏仁米酒产氨基酸态氮的发酵条件进行试验设计;并对CCD试验结果分别进行响应面法分析和BP神经网络分析。结果表明,响应面模型、BP神经网络模型的相关系数(R)、决定系数(R2)、均方根误差(root mean square error,RMSE)、绝对平均相对误差(absolute average relative error,AARE)分别为0.984 77、0.969 77、22.759 38、0.031 15 和 0.994 94、0.989 91、13.206 39、0.008 84;BP 神经网络优化的最佳发酵条件:薏仁米∶糯米=2.8∶1(质量比)、接种量为4.8%、温度为28.2℃、水料比为2.2∶1(mL/g),且实际值和预测值基本一致。相较于响应面法,BP神经网络在优化薏仁米酒产氨基酸态氮上具有更好的拟合能力和优化效果。
中文关键词: 多层前馈(BP)神经网络 响应面法 薏仁米 氨基酸态氮 发酵条件
Abstract:Comparing the effect of amino acid nitrogen production from coix seed wine through the backpropagation (BP)neural network and response surface methodology,a more suitable model was selected in optimizing the content of acid nitrogen production.Acid nitrogen production was used as a survey indicator,with the ratio of coix seed and glutinous rice,inoculation amount,temperature,and water-to-material ratio used as influencing factors.A central composite design (CCD)was adopted for the fermentation conditions of the brewery,and the results were analyzed using the response surface methodology and back-propagation neural network.The results showed that the correlation(R),R-squared(R2),root mean square error(RMSE)and absolute average relative error(AARE) correlation coefficients of the back-propagation neural network model,and the response surface methodology were 0.994 94,0.989 91,13.206 39,0.008 84 and 0.984 77,0.969 77,22.759 38 and 0.031 15,respectively.At the same time,the optimal fermentation conditions generated by the back-propagation neural network were obtained as follows:coix seed ∶glutinous rice 2.8∶1 (mass ratio),inoculum 4.8%,temperature 28.2℃,water material ratio 2.2∶1 (mL/g).Moreover,the actual and predicted values of the back-propagation neural network under optimal conditions were almost the same.Overall,compared with the response surface method,the back-propagation neural network had better fitting ability and optimization for amino acid nitrogen production from coix seed wine.
keywords: back propagation(BP)neural network response surface methodology coix seed amino acid nitrogen fermentation condition
文章编号:202109018 中图分类号: 文献标志码:
基金项目:贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]371)
引用文本: