本文已被:浏览 3476次 下载 626次
投稿时间:2020-06-10
投稿时间:2020-06-10
中文摘要: 在单因素试验基础上,采用Box-Behnken 设计响应面和遗传算法-神经网络两种方式对龙牙百合总黄酮提取工艺条件进行优化。结果表明:各因素对提取结果均呈现先上升后下降的趋势,响应面法和遗传算法-神经网络模型法相对误差和决定系数R2 分别为1.19%、0.955 4 和0.72%、0.994 7。经验证,遗传算法-神经网络模型优化结果高于响应面,表明前者具有更强优化能力。最终采用遗传算法-神经网络优化获得提取龙牙百合总黄酮最佳工艺条件为:提取温度73 ℃、提取时间50 min、液固比43∶1(mL/g)、乙醇体积分数53%,在此条件下总黄酮含量为47.17 mg/g,高于响应面预测值46.63 mg/g。
Abstract:Response surface methodology(RSM)of Box-Behnken design and genetic algorithm-neural network(GA-NN)were used on the basis of the single-factor test to optimize the extraction of total flavonoids from Lilium brownii.The results showed that the amount of each extracted factor showed a rising trend followed by a decline.GA-NN showed better prediction and optimization abilities and had a lower relative error rate(0.72%versus 1.19%)and higher determination coefficient R2(0.994 7 versus 0.955 4)than RSM. Accordingly,the optimal conditions determined using GA -NN were as follows:50 min extraction time,53% ethanol concentration,43 ∶1(mL/g)liquid-solid ratio,73 ℃temperature.Under these optimized conditions,the total flavonoid content was 47.17 mg/g,which was higher than the amount obtained using RSM(46.63 mg/g).
keywords: Lilium brownii total flavonoids response surface methodology artificial neural network genetic algorithm
文章编号:202107017 中图分类号: 文献标志码:
基金项目:湖南省教育厅优秀青年项目(18B427);邵阳学院研究生科研创新项目(CX2019SY057);邵阳学院“双一流”建设产学研合作平台(邵院通〔2018〕50 号)
引用文本: