本文已被:浏览 1020次 下载 0次
投稿时间:2018-11-22
投稿时间:2018-11-22
中文摘要: 利用可见/近红外高光谱(400 nm~1 000 nm)成像技术实现对荷斯坦奶牛、秦川牛、西门塔尔牛、安格斯牛、力木赞牛5 个品种牛肉进行快速无损判别。首先对原始光谱进行预处理,并利用光谱-理化值共生距离法(sample set partitioning based on joint X-Y distance ,SPXY)法划分样本集;结合偏最小二乘判别模型(partial least squaresdiscrimination analysis,PLS-DA),K 最近邻(K-nearest neighbor,KNN)模型和径向基函数-支持向量机(radial basis function-support vector machine,RBF-SVM)模型进行全波段及特征波段判别分析。结果表明,一阶导数(first derivative,FD)法为最优预处理方法;基于RBF-SVM 法所建模型的校正集与预测集准确率分别为100%、99%。可见,基于高光谱成像技术能够获得较好的牛肉品种判别效果。
中文关键词: 可见/近红外 高光谱成像技术 牛肉品种判别 偏最小二乘判别 径向基函数-支持向量机
Abstract:A fast and non-destructive identification for beef varieties of Holstein cows,qinchuan cattle,simmental,Angus,limozan cattle,using visible/near-infrared(400 nm-1 000 nm)hyperspectral technologies was established.Firstly,preprocessing the original spectrum and using joint X-Y distances(SPXY)method to divide the sample.K-nearest neighbor(KNN),partial least squares discrimination analysis(PLS-DA),and radial basis function-support vector machine(RBF-SVM)models discriminant of beef were established,basing on full spectrum and characteristic wavelengths respectively.The results showed that the first derivative(FD)method was the optimal pretreatment method;and the accuracy of the correction set and prediction set of the RBF-SVM models was 100 % and 99 %,respectively.It was confirmed that using hyperspectral imaging technologies could obtain a better recognition effect of beef varieties.
keywords: visible/near infrared hyper spectral imaging technology beef breeds identification partial least squares-discrimination analysis(PLS-DA) radial basis function-support vector machine(RBF-SVM)
文章编号:201920034 中图分类号: 文献标志码:
基金项目:
引用文本: