###
食品研究与开发:2019,40(20):190-194
本文二维码信息
码上扫一扫!
基于高光谱成像技术对牛肉品种判别的研究
(1.宁夏工商职业技术学院旅游管理系,宁夏银川750021;2.宁夏大学学术期刊中心,宁夏银川750021;3.宁夏大学农学院,宁夏银川750021)
Identification of Beef Breeds Based on Hyper Spectral Imaging Technique
(1.Department of Tourism Management,Ningxia Vocational Technical College of Industry and Commerce,Yinchuan 750021,Ningxia,China;2.Academic Journal Center,Ningxia University,Yinchuan 750021,Ningxia,China;3.School of Agriculture,Ningxia University,Yinchuan 750021,Ningxia,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1020次   下载 0
投稿时间:2018-11-22    
中文摘要: 利用可见/近红外高光谱(400 nm~1 000 nm)成像技术实现对荷斯坦奶牛、秦川牛、西门塔尔牛、安格斯牛、力木赞牛5 个品种牛肉进行快速无损判别。首先对原始光谱进行预处理,并利用光谱-理化值共生距离法(sample set partitioning based on joint X-Y distance ,SPXY)法划分样本集;结合偏最小二乘判别模型(partial least squaresdiscrimination analysis,PLS-DA),K 最近邻(K-nearest neighbor,KNN)模型和径向基函数-支持向量机(radial basis function-support vector machine,RBF-SVM)模型进行全波段及特征波段判别分析。结果表明,一阶导数(first derivative,FD)法为最优预处理方法;基于RBF-SVM 法所建模型的校正集与预测集准确率分别为100%、99%。可见,基于高光谱成像技术能够获得较好的牛肉品种判别效果。
Abstract:A fast and non-destructive identification for beef varieties of Holstein cows,qinchuan cattle,simmental,Angus,limozan cattle,using visible/near-infrared(400 nm-1 000 nm)hyperspectral technologies was established.Firstly,preprocessing the original spectrum and using joint X-Y distances(SPXY)method to divide the sample.K-nearest neighbor(KNN),partial least squares discrimination analysis(PLS-DA),and radial basis function-support vector machine(RBF-SVM)models discriminant of beef were established,basing on full spectrum and characteristic wavelengths respectively.The results showed that the first derivative(FD)method was the optimal pretreatment method;and the accuracy of the correction set and prediction set of the RBF-SVM models was 100 % and 99 %,respectively.It was confirmed that using hyperspectral imaging technologies could obtain a better recognition effect of beef varieties.
文章编号:201920034     中图分类号:    文献标志码:
基金项目:
引用文本:


用微信扫一扫

用微信扫一扫