###
食品研究与开发:2017,38(20):1-10+79
查看/发表评论     过刊浏览    高级检索     HTML     PDF
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于BP神经网络的烟熏香肠色泽预测研究
陈炎1,屠泽慧1,聂文1,季拓1,刘敏1,张静2,杨潇1,蔡克周1,*,陈从贵1,姜绍通1
(1.合肥工业大学食品科学与工程学院,农产品精深加工安徽省重点实验室,安徽合肥230009;2.安徽淮北市生产力促进中心,安徽淮北235000)
Prediction of Smoked Sausage Color Based on BP Neural Network
CHEN Yan1,TU Ze-hui1,NIE Wen1,JI Tuo1,LIU Min1,ZHANG Jing2,YANG Xiao1,CAI Ke-zhou1,*,CHEN Cong-gui1,JIANG Shao-tong1
(1.College of Food Science and Engineering,Hefei University of Technology,Key Laboratory for Agricultural Products Processing of Anhui Province,Hefei 230009,Anhui,China;2.Anhui Huaibei Productivity Promotion Center,Huaibei 235000,Anhui,China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1414次   下载 1189
投稿时间:2017-03-06    
中文摘要: 以传统烟熏方式加工的香肠为研究对象,利用反向传播(Back-Propagation,BP)神经网络建立烟熏香肠色泽的预测模型。通过试验获得不同烟熏温度、烟熏时间和肥瘦比条件的烟熏香肠,测定其L*、a*、b*和△E值,并对BP神经网络算法、隐含层神经元个数、学习速率和动量系数进行优化,获得最佳的BP神经网络预测模型结构。基于Levenberg-Marquardt算法建立精确的L*、b*和△E预测模型,性能测试显示L*、b*和△E预测模型的相关系数(R2)分别为 0.847、0.825 和 0.924。相应的均方根误差(root mean square error,RMSE)分别为 4.609、3.564 和 5.012。基于拟牛顿BFGS算法建立精确的a*值预测模型,性能测试显示模型的R2和RMSE分别为0.905和2.237。
Abstract:Processed in a conventional manner smoked sausages as the research object,back-propagation(BP)neural network prediction model is used to predict the color of smoked sausage.Used the smoked sausage with different smoked temperature,smoked time and fineness ratio,the L*,a*,b*and△E value were determined,and the BP neural network algorithm,hidden layer neuron number,learning rate and momentum coefficient were optimized,and the best BP neural network prediction model structure.Based on Levenberg-Marquardt algorithm,the accurate L*,b*and△E prediction model are established.The performance test shows that the correlation coefficient(R2)of L*,b*and△E prediction model are 0.847,0.825 and 0.924,respectively.The corresponding root mean square error(RMSE)are 4.609,3.564 and 5.012,respectively.Based on the Quasi-Newton BFGS algorithm,an accurate a*prediction model is established,the performance test shows that the R2and RMSE of the model are 0.905 and 2.237,respectively.
文章编号:201720001     中图分类号:    文献标志码:
基金项目:国家自然科学基金(31501585);科技部农业科技成果转化基金项目(2014GB2C300007)
引用文本:


用微信扫一扫

用微信扫一扫