本文已被:浏览 2641次 下载 715次
投稿时间:2015-07-13
投稿时间:2015-07-13
中文摘要: 采用近红外光谱和中红外光谱技术结合极限学习机算法建立芝麻油中掺入大豆油的定性分析模型。选取不同 品牌、批次的芝麻油、大豆油配置 90 个掺伪样本与 40 个芝麻油样本做定性分析。设定极限学习机算法相关网络参数, 比较近红外光谱和中红外光谱的定性模型识别结果,研究光谱检测方法的可行性和分类识别的准确率,为实现基于光 谱检测技术的芝麻油掺伪快速辨别分析奠定理论和实践检验基础,抑制芝麻油掺伪情况的发生。
Abstract:Qualitative analysis with near-infrared and mid-infrared spectroscopy and extreme learning machine algorithm were used for discriminate sesame oil from adulterated sesame oil with soybean oil. Analyzing 90 adul- terated samples which were prepared with sesame oil, soybean oil of different brands and batches and 40 sesame oil samples detected the adulteration.Set network parameters a limit of extreme learning machine algorithms, and compared the result of near-infrared and mid-infrared spectroscopy, and studied the feasibility of the spec- trum detection method and classification accuracy, in order to make basis of theory and practical for the sesame oil adulteration of spectrum detection technology fast discrimination analysis, inhibition of sesame oil adulter- ation happening.
文章编号:201608035 中图分类号: 文献标志码:A
基金项目:北京市教委科技发展重点项目(KZ201310011012);北京市自然科学基金(4132008);北京市教委科技创新平台(PXM_2012_ 014213_000023)
Author Name | Affiliation |
WEI Li-na,LIU Cui-ling, ZHAO Qi,DAI Yue | Beijing Technology and Business University, Beijing 10048,China |
引用文本: